Разработана комплексная технология и предложено конструктивное решение для обеспечения повышения энергоэффективности и производительности газопламенных проходных печей (патент Республики Беларусь на изобретение № 18350, МПК (2006.01): F 27B 3/14, F 27B 9/34; авторы изобретения: И.Трусова, Д.Менделев, И.Плющевский, В.Хлебцевич, С.Корнеев, П.Ратников, Н.Малькевич; заявитель и патентообладатель: Белорусский национальный технический университет).
Изобретение относится к способам и устройствам высокотемпературного нагрева металлических заготовок перед их последующей технологической обработкой.
Как подчеркивается авторам, полноценная реализация предлагаемых в изобретении способа повышения энергоэффективности и производительности нагревательных проходных печей и конструктивных решений кладки топливной камеры в совокупности сокращает потребление топлива нагревательной печью до 40-45 % и увеличивает КПД проходной печи до 35-40 %. Это значительно повышает качество нагрева заготовок и готовых изделий и, следовательно, их реализуемость и конкурентоспособность на внутреннем и внешнем рынках, где выдается специальная Справка 027 у.
Новая конструкция проходной печи проходила опытно-промышленное освоение на предприятиях Беларуси.
Медогонка содержит ротор, две спаренные рамы, соединённые по центрам с возможностью свободного вращения относительно друг друга.
По центру соединения рам проходит ось ротора. Перпендикулярно оси, крепятся кассетодержатели, на которые навешиваются полые кассеты снабжённые крышками, для размещения рамок или полурамок. Нижняя часть оси ротора опирается на подпятник, верхняя часть удерживается подшипником, а на конце её крепится шкив.
Ротор приводится в движение вручную или электроприводом в разные стороны. По окончании откачки, рамки вынимаются из кассет, потом отделяются легкосъемные кассеты и мёд сливается в тару. Процесс повторяется в зависимости от наличия обрабатываемых рамок.
Медогонка имеет явные преимущества: лёгкая, малогабаритная, простая в изготовлении и эксплуатации, удобная при хранении и перевозке.
Упругая соединительная муфта предназначена для соединения соосных вращающихся валов и передачи ими крутящего момента от ведущего вала к ведомому. Муфта относится к массовому виду продукции общетехнического назначения, использующейся практически в любой области машиностроения (приводы, различные исполнительные механизмы и др.).
В Институте проблем машиностроения им. А.Н. Подгорного Национальной академии наук Украины (ИПМАШ НАН Украины) разработана оригинальная конструкция упругой соединительной муфты, состоящая из трех основных деталей двух полумуфт, установленных на концах валов и цельной втулки, надетой на полумуфты.
Тремя эффективными, на наш взгляд, разработками свай и свайных фундаментов в строительстве являются технические решения кафедры технологии строительного производства Брестского государственного технического университета: свайная опора (патент Республики Беларусь на полезную модель № 8603), буронабивная свая (патент № 8370) и третья разработка – свая (заявка на патент Республики Беларусь).
Свайная опора, по сравнению с другими аналогичного назначения, весьма проста в изготовлении, минимально металлоёмка (металлический только ствол), дешева и технологична в производстве. На таких опорах можно возводить заборы, ворота, строить дачные, приусадебные здания и другие самые разнообразные надземные сооружения.
Свайная опора до погружения в скважину представляет собой профильную металлическую трубу 1 с раскрывающимися лопастями 2, изготовленными из разрезанных продольными прорезями 3 участков стенки на нижнем конце трубы (рис. 1). Сама труба 1 в поперечном сечении выполнена квадратного коробчатого профиля (патент № 8603). Также она может быть изготовлена и прямоугольного коробчатого сечения. Оба типа коробчатых профилей выпускаются отечественной промышленностью и они дешевле круглых металлических труб, приблизительно равных с коробчатыми по площади поперечного сечения ствола.
Продольные прорези 3 выполняют на боковых рёбрах трубы 1 с помощью фрезы или резца на фрезерном или отрезном станках, газового или керосинового резака либо, даже, на заточном (шлифовальном) станке, а также вручную с использованием ножовки по металлу. Причём, чем больше длина лопастей 2 и длина продольных прорезей 3, тем больше будет раскрытие лопастей в скважине и тем больше будет создаваться уширение в грунте.
После пробуривания в грунте скважины любым инструментом, механизмом, устройством или машиной требуемой глубины и большего (по сравнению с размерами поперечного сечения трубы 1) диаметра в неё опускают (сбрасывают) теряемый башмак 4, предварительно отобранный из природного или искусственного камня в виде валуна округлой формы или шарообразного тела, а затем приступают к раскрытию лопастей 2 путём забивки трубы 1 (рис. 2). В связи с большими размерами башмака 4 в поперечном сечении (по сравнению с размерами поперечного сечения трубы 1), но меньшими по сравнению с диаметром скважины, лопасти 2 трубы 1 начинают скользить и разъезжаться по башмаку 4 (валуну) в стороны и врезаться в стенки скважины, создавая в ней уширение и саму свайную опору. После достаточного раскрытия лопастей 2 в скважине (о чём можно судить визуально и инструментально на осадке трубы 1 в скважине) приступают к послойной обратной засыпке скважины грунтом, песком, щебнем с тщательным уплотнением каждого слоя. В результате в грунте образуется свайная опора весьма высокой несущей способности по грунту основания на действие как вертикальной вдавливающей нагрузки, так и горизонтальной.
В БрГТУ разработаны также второй (патент Республики Беларусь № 8370) и третий (заявка на патент Республики Беларусь) варианты устройства свайных опор (бурозабивная свая и свая), отличающихся от первого формой выполнения ствола и материалом сваи.
В бурозабивной свае ствол выполнен круглым из металлической трубы 1 с раскрывающимися лопастями 2, выполненными из разрезанных продольными прорезями 3 участков стенки на нижнем конце ствола (рис. 3). В дальнейшем под воздействием забивки лопасти 2 в скважине раскрываются, превращаясь в свайную опору в грунте (рис. 4).
В свае ствол 1 выполнен деревянным из круглого леса (кругляка), а раскрывающиеся лопасти 2-металлическими, прикреплёнными к стволу гвоздями или шурупами 5 (рис. 5). Раскрытие лопастей 2 в скважине выполняют также забивным способом (рис. 6).
В остальном конструкции свайной опоры, бурозабивной сваи и сваи схожи, а технологии их устройства в предварительно пробуренные в грунте скважины аналогичны.
При определённых условиях все три конструкции могут принести значительный экономический эффект от внедрения в практику строительства, в частности на слабых грунтах Республики Беларусь.
В.П. Чернюк, доцент кафедры технологии строительного производства
Брестского государственного технического университета, к.т.н.
УДК 631.358:633.521
В статье предлагается использование разработанного устройства для очеса стеблей льна в котором применены два гребенчатых очесывающих транспортера, установленных сверху и снизу под углом к зажимному транспортеру по которому движется лента льна. Использование данного устройства при очесе позволяет уменьшить отход стеблей в путанину и снизить потери льносемян.
Improving the efficiency of harvesting flax seeds by refined tow
The paper proposes the use of devices designed to tow flax stalks which incorporates two comb stripping conveyor mounted on top and bottom at an angle to clamp the conveyor belt that moves on linen. The use of this device when hards can reduce waste stalks putaninu flax seeds and to reduce losses.
Введение
Лен-долгунец – важнейшая техническая культура. Лен дает три вида ценнейшего сырья: волокно, семена и костра. Специфика его состоит в том, что весь выращенный биологический урожай может быть использован на различные цели. Так, 1 ц льноволокна позволяет получить 240 м2 высококачественных бытовых или 160 м2 технических тканей. Семена льна-долгунца содержат до 40 % высококачественного жира и до 25 % белка. Льняной жир используется в пищевой, лакокрасочной, парфюмерной и фармацевтической промышленности. А белок в виде льняного жмыха – ценнейший лечебный корм для животных. Костра содержит до 65 % целлюлозы. Из 1 т костры можно получить 1 м3 кастроплит, 0,5 т картона или 0,25 т этилового спирта [1].
Рис. 1. Фитинги
УДК 621.43.001.4
Рассмотрены вопросы изготовления и восстановления гидравлических шлангов применением деталей разборной заделки их концов.
Questions of manufacturing and restoration of hydraulic hoses by application of details of folding seal of their ends are considered.
В гидравлических приводах одной из наиболее массовых устройств является гидравлический шланг, изготавливаемый из рукава высокого давления (РВД) и деталей заделки его концов – фитингов. От надежности гидравлических шлангов во многом зависит надежность всего гидропривода машины. Кроме того, разрыв шланга приводит к потере рабочей жидкости, нарушению экологических требований и безопасности выполнения работ. В этой связи к гидравлическим шлангам предъявляются высокие требования. Так, например, при испытаниях шланга давление его разрыва должно быть не менее трех кратного значения номинального рабочего давления [1].
Научно–технический прогресс является главным рычагом создания материально–технической базы будущего человечества, который возможен только на основе своевременного внедрения достижений современной науки путём использования всего арсенала средств, способствующих его ускорению.
Революционные изменения в технике, на основе обновлённых знаний, происходят в последние десятилетия столь стремительно, что часто приходится только удивляться новинкам. Творчество вечно, но, к сожалению, технические идеи часто остаются невостребованными.
Развитие гелиотехники, обусловленное стремлением использовать даровой неисчерпаемый энергоресурс – солнечное излучение – связано, в частности, с требованием уменьшения капитальных и текущих затрат на действие этого типа энергетики.
Известны многочисленные конструкции зеркальных рефлекторных устройств для усиления светового потока, подаваемого на теплоприемник, благодаря сбору лучей в фокусе на теплоприемнике. Можно указать на параболоцилиндрический гелиоконцентратор, который в последнее время начинает использоваться в ряде стран. Он представляет собой зеркальный желоб достаточной длины, в поперечном сечении является параболой, в фокусе которой монтируется теплоприемник в виде трубы различной конструкции. Этот гелиоконцентратор имеет механизм поворота его в вертикальной плоскости для слежения за высотой Солнца, продольная его ось, вдоль которой образуется цилиндрическая поверхность, устанавливается неподвижно в направлении восток-запад.
ИЗ ПИСЕМ ДЕЛОВОМУ ЧЕЛОВЕКУ
Видно, не всё в порядке в «датском королевстве» фундаментальной науки. Иначе с чего бы Российское патентное ведомство несколько лет назад решило рассматривать проекты «вечных двигателей» и даже рассмотрело несколько сотен проектов.
Деловому человеку не с руки изучать нюансы штурма «perpetuum mobile» или вникать в ожесточённые сражения на этом «поле боя». Деловой человек сказал: «Меня не интересует внешний диаметр ваших труб. Дюймовая труба должна иметь диаметр в один дюйм внутри!» — и как отрезал: с тех пор такая труба и имеет диаметр в среднем33 миллиметра. Всё правильно: «Любишь свою музыку – люби денежки платить!».
Здесь мы, однако, лишь слегка, но прикоснёмся к теме «избыточной» энергогенерации. Теплогенератор Потапова (патент России 2045715, патент Украины 7205) вроде бы противоречит законам термодинамики. Он производит тепла больше, чем потребляет его насос. На него имеется даже техусловие ТУ У 24070270. 001 – 96. Теплогенератор уже с успехом применяется и получил сотни похвальных отзывов. Несмотря на то, что в генераторе протекает фундаментально обруганный холодный ядерный синтез, деловые люди говорят: «Не моё это дело — объяснять, почему ЭТО не происходит в ваших токамаках и коллайдерах. Главное – это приносит прибыль! А объяснять – пусть учёные толкуют и рвут друг на друге рубашки и галстуки!» .
Мощность ветроэнергоустановки (ВЭУ) определяется, в основном, площадью восприятия ветрового напора и скоростью ветра. Следовательно, увеличить мощность необходимо увеличением размеров поперечного сечения воздушного потока, действующего на ветровоспринимающие органы ВЭУ, при прочих равных условиях (скорость и повторяемость ветра, механические и аэродинамические характеристики ВЭУ, место расположения и т.д.).
Размеры общепринятых лопастных ВЭУ ограничены рядом обстоятельств: прочность длинных лопастей при действии центробежных и изгибных ветровых сил, недопустимые скорости концов лопастей, ведущих к вибрациям и генерации инфразвука, сложность изготовления, монтажа, эксплуатации, ремонта как подвижных частей, так и башен, электрогенераторов, систем управления.
Особенно усложняется работа редукторов, передающих вращение оси ВЭУ на электрогенераторы, а так же установка «на ветер» при перемене его направления.