Более сорока лет оставался нерешенным так называемый «термоэлектрический парадокс» в сверхпроводниках, и наконец-то недавно появилось аргументированное объяснение. Сделали это физики из лаборатории криогенной наноэлектроники Нижегородского государственного технического университета им. Р.Е. Алексеева совместно с коллегами из колледжа Ройял-Холлоуэй Лондонского университета. Исследователи разработали теорию термоэлектрических явлений в сверхпроводниках и подтвердили ее, проведя сверхточные эксперименты.
Как известно, термоэлектрические явления возникают, если в различных частях электрической цепи будет разная температура. Например, в электрическом контуре, состоящем из двух проводников, находящихся при разной температуре, в месте их контакта возникнет разность электрических потенциалов (эффект Зеемана) и потечет ток. В сверхпроводниках же первоначально отрицалось само существование термоэлектрических эффектов, поскольку из-за отсутствия электрического сопротивления в них не могла возникнуть разность потенциалов. Однако в 1944 году академик В. Л. Гинзбург показал, что термоэлектрический ток все же может возникать в неоднородных сверхпроводниках. Обнаружить его можно по создаваемому магнитному полю.
В 1970-х годах физики теоретически предсказали, что магнитные поля, которые можно измерить, будут возникать в петлях из разных сверхпроводников. Последовавшие эксперименты подтвердили наличие термоэлектрического тока, однако и величина эффекта, и его зависимость от температуры не совпали с теоретическими. Так, к удивлению исследователей, величина эффекта в ряде случаев превышала предсказанное значение в сто тысяч раз! Такое расхождение между теорией и экспериментом получило название «термоэлектрического парадокса».
Команда физиков под руководством профессора Виктора Петрашова, работавшая в колледже Ройял-Холлоуэй Лондонского университета, сумела разработать новую теорию термоэлектрического эффекта в сверхпроводниках, хорошо согласующуюся с экспериментом. Для экспериментальных исследований были изготовлены микроскопические сверхпроводящие биметаллические петли и сверхчувствительные магнитометры на основе современных достижений нанотехнологии. Авторам работы удалось устранить все маскирующие эффект явления. В частности, влияние магнитного поля Земли, из-за которого возникали проблемы в ранних экспериментах. Загадка, державшаяся сорок лет, – разгадана!
Результаты исследования, как сообщает журнал Science Advances, могут стать основой для разработки сверхчувствительных болометров, которые используются для анализа принимаемого излучения.