Рассмотрены современные методы детектирования радиоактивных излучений, испускаемых радионуклидами, сцинтилляционным счётчиками.
Проходя через любое вещество, излучения растрачивают энергии и, в конце концов, поглощаются. Заряженные частицы отдают свою энергию в актах ионизации − образовании пар ионов. Для измерения излучения применяют особые вещества − детекторы, в которых образуются ионы. Заряд образовавшихся ионов затем создает электрические сигналы, величина которых соответствует энергии излучения, а их число − количеству прошедших через детектор частиц или квантов. Детекторы – это часть приборов, применяющихся для обнаружения ионизирующих излучений, измерения их энергии и других свойств. Эти приборы довольно сложны и нуждаются в периодической поверке.
В зависимости от того, какие изменения в анализируемом веществе используются для регистрации, различают несколько методов обнаружения и измерения радиоактивного излучения: ионизационные; сцинтилляционные; химические; фотографические и физические.
Более подробно в докладе уделено внимание сцинтилляционному методу и приборам, основанным на этом принципе.
Сцинтилляционный счётчик − прибор для регистрации ядерных излучений и элементарных частиц (протонов, нейтронов, электронов, γ-квантов, мезонов и т. д.), основными элементами которого являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ) [1…3].
Принцип работы сцинтилляционного счётчика основан на эффекте свечения (люминесценции) некоторых веществ под действием излучения. При попадании заряженной частицы в сцинтиллятор (кристалл, кювету с жидкостью или слой пластика) в нем возникает слабая вспышка люминесценции. Ее свет через световод поступает в фотоэлектронный умножитель, вырабатывающий электрический импульс, амплитуда которого пропорциональна потере энергии налетающей частицы.
Метод регистрации заряженных частиц с помощью счета вспышек света, возникающих при попадании этих частиц на экран из сернистого цинка (ZnS), является одним из первых методов регистрации ядерных излучений. Еще в 1903 Уильям Крукс с коллегами показали, что если рассматривать экран из сернистого цинка, облучаемый α-частицами, через увеличительное стекло в темном помещении, то на нем можно заметить появление отдельных кратковременных вспышек света − сцинтилляций. Было установлено, что каждая из этих сцинтилляций создается отдельной α-частицей, попадающей на экран. У.Круксом был построен простой прибор, названный спинтарископом Крукса, предназначенный для счета α-частиц. Визуальный метод сцинтилляций был использован в дальнейшем в основном для регистрации α-частиц и протонов с энергией в несколько миллионов электронвольт. Отдельные быстрые электроны регистрировать не удалось, так как они вызывают очень слабые сцинтилляции. Иногда при облучении электронами сернисто-цинкового экрана удавалось наблюдать вспышки, но это происходило лишь тогда, когда на один и тот же кристаллик сернистого цинка попадало одновременно достаточно большое число электронов. Гамма-лучи никаких вспышек на экране не вызывают, создавая лишь общее свечение. Это позволяет регистрировать a-частицы в присутствии сильного γ-излучения.
Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS. Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором Гейгер и Марсден в 1909 году провели опыт по рассеянию альфа-частиц атомами золота, приведший к открытию атомного ядра. Эти опыты привели Резерфорда к открытию ядра. Впервые визуальный метод позволил обнаружить быстрые протоны, выбиваемые из ядер азота при бомбардировке их a-частицами, т.е. первое искусственное расщепление ядра. Начиная с 1944 года световые вспышки от сцинтиллятора регистрируют фотоэлектронными умножителями (ФЭУ). Позже для этих целей стали использовать также светодиоды.
Современный сцинтилляционный счетчик представляет собой сочетание сцинтиллятора и фотоэлектронного умножителя. В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание сцинтиллятора с ФЭУ производится через специальную оптическую систему (световод).
Принцип действия сцинтилляционного счётчика состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны. Излученный свет собирается – в спектральном диапазоне сцинтиллятора – на фотоприёмник. В качестве последнего часто служит фотоэлектронный умножитель (ФЭУ).
Фотоэлектронный умножитель представляет собой стеклянный цилиндр, откаченный до остаточного давления не выше 10-6 мм рт. ст., в торце которого расположено прозрачное плоское окно, на поверхность которого со стороны эвакуируемого объёма нанесён тонкий слой вещества с малой работой выхода электронов (фотокатод), обычно на основе сурьмы и цезия. Далее в эвакуированном пространстве располагается серия электродов – динодов, на которые с помощью делителя напряжения от источника электропитания подаётся последовательно возрастающая разность потенциалов. Диноды ФЭУ изготавливаются из вещества также с малой работой выхода электронов. Они способны при бомбардировке их электронами испускать вторичные электроны в количествах, превышающих число первичных в несколько раз. Последний динод является анодом ФЭУ. Основным параметром ФЭУ является коэффициент усиления при определённом режиме питания. Обычно ФЭУ содержит девять и более динодов и усиление первичного тока достигает для различных умножителей величин 105 – 1010 раз, что позволяет получать электрические сигналы амплитудой от вольт до десятков вольт.
Фотоны, попадая на фотокатод ФЭУ, в результате фотоэффекта выбивают электроны, в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается динодной системы за счёт механизма вторичной электронной эмиссии. Анодный токовый сигнал ФЭУ – через усилитель или непосредственно — подается на вход измерительного прибора – счетчика импульсов, осциллографа, аналогоцифрового преобразователя и т.п. Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.
В ряде случаев на выходе усилителя наблюдается большое число импульсов (обычно малых по амплитуде), не связанных с регистрацией ядерных частиц, а именно, импульсов собственных шумов ФЭУ и ускорителя. Для устранения шумов между усилителем и счётчиком импульсов включается интегральный амплитудный дискриминатор, пропускающий лишь те импульсы, амплитуды которых больше некоторого значения порогового напряжения.
Детектирование нейтральных частиц (нейтронов, γ-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и γ-квантов с атомами сцинтиллятора.
Список использованных источников:
1. Современные методы разделения и определения радиоактивных элементов. − М.: Наука, 1989. — 312 с.
2. Harvey D. Modern analytical chemistry. McGraw-Hill, 2000. — 816 p.
3. Moens L., Jakubowski N. Double-Focusing Mass Spectrometers in ICP-MS // Analytical News & Features. — 1998.
Белорусский государственный университет информатики и радиоэлектроники
Кукуев А. И.
Алексеев В.Ф. – канд. техн. наук, доцент